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A simple recursive relation is derived for the moments M,, n = 1, 2,..., of the 
Percus Yevick correlation function h(r) for identical hard spheres. The M, are 
rational functions of the volume fraction w occupied by the spheres; the first ten 
are given explicitly, and a single-term asymptotic form is obtained to suffice for 
the rest. Applications of the Mn(w) include testing different approximations for 
h by numerical integration of h(r) r n. We compare exact moments with shell 
approximations M~[h s] corresponding to integration from r=0  to s+ 1 for 
s=3 8, and with hybrid approximations M,[hS+h a] which supplement the 
shell approximations with integrals of an asymptotic tail from s + 1 to oo. For 
a given s, the hybrid approximation is better for w increasing than the shell 
approximation, and Mn[h3+ h a] is even better than M~[hS]. 

KEY WORDS: Percus-Yevick correlation function; moments; shell expan- 
sions; asymptotic forms; residue series; hybrid approximations. 

1. I N T R O D U C T I O N  

The solut ion of the Percus-Yevick (PY) equat ion  (1> for the radial distribu- 

t ion funct ion g(r) of a classical fluid of identical hard spheres was obtained 
by Wertheim (2) and  by Thiele (3~ in terms of the Laplace t ransform 

5s = G ( t ) .  Here r is the distance from the center of one sphere 
divided by the sphere diameter  d, so that g ( r ) = 0  for r <  1, and  

g ( r ) = g ( w ; r )  depends on only one parameter:  the volume fraction 
occupied by the spheres, w = pnd3/6, with p the n u m b e r  density. Piecewise 
analyt ic  expressions for g(r) at given r in the shells s < r < s +  1 for 
s = l ,  2,..., can be obta ined  (z) by expanding the inverse t ransform 
5 r  in a geometrical progression and  summing  the residues of the 
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terms (gin) from m = 1 to s. The exact results in the range 0 ~< r < s + ! will 
be indicated by gS. 

Wertheim gave the closed from for gt ,  and analogs through g5 and 
tabulated values are available ~4-6) for r~<6. Such shell expansions have 
relatively broad applicability, but we found them unsuitable except for 
small w for numerical investigations of integral equations (7) for multiple 
scattering by correlated random distributions of spherical resonators. We 
extended the shell development to g8, considered the residue series for the 
complete ~2) &~ (which exhibits a Gibbs-like effect near r =  1, but 
whose leading term g~ for moderately large r approximates g'),  as well as 
a hybrid approximation (gb) based on g~ for r ~< s + 1 and g~ for r > s + 1. 
Although these extensions suffice for larger w than gS, the most stable com- 
putational routines we developed for even moderately large w were based 
on the moments  M ,  of the total correlation function h = g -  1. The present 
paper deals primarily with the moments and their applications to test shell 
(h ~) and hybrid (h b) forms of h by numerical integration. 

The moments 

Mn= drh(w;r) rn=M,(w), h = g - 1  (1) 

are simple rational functions of w. The first three are available in the 
literature, (4'8'9) and we may reconstruct these and obtain additional 
moments by symbolic computer differentiation of LP{rh(r)}=H(t). 
However, it is much more convenient to work with a recursive relation for 
the Mn based on Baxter's equation (1~ for the PY h. 

Section 2 provides a form of H(t) suitable for symbolic differentiation, 
and then derives the recursive relation for the M n. The first ten moments 
Mn(w) are displayed in Fig. 1 and listed in the Appendix. Section 3 derives 
an asymptotic series Mn ~ 52~ M]  for large n based on the residues at the 
roots tv(w) of the denominator (2) of H(t). Figure 2 graphs the first five 
roots, and Table I provides numerical values for the dominant root t~(w) 
(and for basic magnitude U~ and phase u~ functions); a one-term 
approximation M~ suffices for n > 6 and w > 0.01. Section 4 considers shell 
expansions g ' =  hS+ 1 and compares exact Mn(w) with shell approxima- 
tions M,[h'] based on numerical integration of hSr n from r = 0 to s + 1 for 
s = 3-8. Figure 3 displays g(w; r) to r = 9 and w = 0.6, and Fig. 4 compares 
M2[h s] and M6[h s-] with the exact moments. Section 5 considers the con- 
vergent residue for h(r) = Y.v h("l. Figure 5 compares exact shall results with 
residue sequences for w = 0.2 and 0.6 .to show the Gibbs-like effect near the 
discontinuity at r = 1. Figure 6 shows that the leading residue term h (1) = h a 
(which follows directly from Table I) suffices for r >  5 even for w=0.6.  
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Figure 4 also shows that the hybrid m 6 [ h  s § ha] = M6[h ~] § Ss+ i dr har 6 
approximation is much better than the shell approximation for a given s, 
and that M6[h 3 § ha] is even better than M6[hs];  the hybrid curves for M2 
included in Fig. 4 practically overlay the exact results. 

2. M O M E N T S  OF T H E  C O R R E L A T I O N  F U N C T I O N  

The exact leading terms of h for small w equal (m 

h =  --1, 0 ~ < r < l  

h --- w(8 - 6r + r3/2) + (~(w2), 1 ~< r < 2 
(2) 

which also follow from the PY equation. (j) Substituting in (1), we obtain 

l 2"+53-- (5n2 + 39n + 82) 
M , , -  t- w + C(w 2) (3) 

n +  1 2 (n+  1 ) ( n + 2 ) ( n + 4 )  

The exact w 2 contribution to h is also known (12) in terms of elementary 
functions, and the PY approximation can be identified directly by com- 
parison of forms in refs. 12 and 1. Although such expansions of h suffice for 
small w, (3) indicates that corresponding expansions of M,  are restricted to 
smaller w as n increases. In the following we consider closed forms of 
M , ( w )  for the PY h without restrictions on w or n. 

The generating function of the moments is 2~'{rh(r)} = H(t): 

;o fo H ( t ) =  drrh(r)  e 'r= ( - t ) "  drh(r )  r ,+i  
,=o n! 

= F, ( - t )  "-~ 
n=l ( -~  ~( Mn (4) 

d n 1 
M~ = (-- 1) n - '  lirn ~ ~ H(t )  (5) 

From Wertheim, (2) we write ~ { r g }  = G in the form 

where 

G(t) = tL( t ) /D(t ) ,  D( t )  = 12wL(t)  + S( t )  e', 

S ( t ) =  ( 1 -  w) 2 t 3 + 6 w ( 1 - w )  t 2+ 18w2t- 12w(1-w)  

L(t) = (1 + w / 2 ) t +  1 +2w 

(6) 

Thus 

H(t )  = G(t) - t -2 = tL( t ) /D( t )  - t -2 (7) 
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and (5) may be performed by machine (~3) operations on the equivalent 
form 

L(t)[E2(t)  - 12wEs(t)] - (1 + w/2) 2 
H(t)  -~ (8) 

[1 + 12wtE4(t)] L(t)  - t(1 + 2w)(1 + w/2) 

where 

En(t)= t-" Ie-t-'~l (-t)v/v!] 
v~O 

The Fourier transform representation of the structure factor 

F(K) = 1 + (6w/~) f dr h(r) exp(iK �9 r) 

= 1 + (24w/K) dr rh(r) sin(Kr) (9) 

generates the even moments 

~ (--K2) n-1 K2M4 
F(K) = 1 + 24w ~ 7 ~.T M2, = 1 + 24wM2 - 24w ~ + ... 

n=l 
(lO) 

Since F ( K ) =  F(w; K) must vanish for the unrealizable bound w = 1 (corre- 
sponding to zero fluctuation scattering for a uniform medium), we require 
M2(1 ) =  - 1 / 2 4  and M2.(1 ) =  0 for n ~> 2. The PY F is also known in closed 
form(14); in particular, 

(1 - w )  4 
F(w; 0 ) =  (1 + 2w) ~ - 1 + 24wM2(w) (11) 

vanishes at w =  1. Equation (11), which also follows (15) directly from the 
scaled particle (16) equation of state, gives M~(w) in closed form (41 by 
inspection, The remaining PY M2. are found to have F(w; 0) as a factor. 

A simpler representation of the M.  follows from Baxter's equation (1~ 

1 

rh(r) = -q ' ( r )  + 12w fo dt (r - t) h(Ir - tl) q(t) (12) 

where 

q(r)(1 -- w) 2 = (1 + 2w)(r 2 -- 1) -- (3w/2)(r -- 1) 

with q ( r )=O for r~> 1, and q'(r)=dq/dr.  Operating on rh with S~ drr" 1, 
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changing the order of r and t integrations, and using h(Ir - t ] )= - 1  for 
r < t, yields 

1 

M . =  - fo dr q'(r) r ' -  i 

+ 12Wfo dtq(t) Ln(-~+l)+f, drr" l ( r - t )  h ( r - t )  (13) 

Integrating over s = r -  t to obtain 

m = O  

we define 

f~ A - [2n + (n - 3)w] 
_ drq,(r) r ~ 1= A . -  

( l - w )  2' 2n(n + 1) 

f f  B m - [4 + 2m + ( m -  1)w] dt q(t) t" B m = 
( l - w )  2' 2(m+ 1)(m+2)(m+3)  

B.+I ( n 2 + 9 n + 2 6 ) [ 3 w - n ( 2 + w ) ] - 1 2 ( 2 + w )  2 
C. = A. + 12w - -  

n(n + 1) 

Thus (13) reduces to 

2 (n+  1)(n+ 2)(n+ 3)(n+4) 

(14) 

M.(1 - w) 2 = C. + 12w B,.M. ,. (15) 
m=o m 

and shifting the m = 0 term 12wBoM . = --w(4 - w) M. to the left side gives 

M . ( l + 2 w ) = C . + 1 2 w  ~ n 1 BmM._m (16) 
m=O 

such that M1 = C1/(1 + 2w), M;  = (C 2 + 12wB1M1)/(1 + 2w), etc. 
It is clear from (16) and (3) that all moments have the form 

--[An(W; N )  N 
M . ( w ) - ( n + l ) ( l + 2 w ) . ,  # . ( w ; N ) = l + ~ a v ( - w )  v (17) 

1 

where the polynomial Pn of order N is given by 

. - t (  1~ n + l  
#n=Cn-- E n-- 1 m ] n + l - - m  b'~#'-" (18) 
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with c ~ = - ( n + l ) C n ( l + 2 w )  n 1, and b , = - 1 2 w B n ( l + 2 w )  ~ l. All c~, 
and bn except bl (which is propor t ional  to w), are of order n + 1 in w; the 
order of #n (in general that  of b2#~_2) is N = ( 3 n + l ) / 2  for n odd, and 
N = 3n/2  for n even. 

The Appendix lists the first ten moments  (generated by machine(13~), 
and Fig. 1 provides a three-dimensional display to delineate trends. For  
0 < w < 1, the number  of  extrema (and zeros) is given by N -  n - 2 > 0, so 
that  successive pairs f rom Ms,  M6, to M19 , M20 start with one extremum 
and end with eight extrema, etc. 

3. A S Y M P T O T I C  FORM OF M, ,  

Since the recursive relation for M~ involves sequential determination 
of preceding moments,  we derive an asymptot ic  series for large n by 
working with the residues at the complex roots (tv, t*) of D ( t )  in (6). 

7. 0 

Fig. 1. Three-dimensional display to delineate trends of the first ten moments Mn(w ) of the 
hard-sphere PY h vs. volume fraction w. The values of -Mn(0 ) are (1 + n) -1. The values of 
-M,(1) for n = 1, 2, 3 are 3/20, 1/24, 3/350; the remaining even moments vanish, and the odd 
are small and alternate in sign. 



Moments  of PY Hard-Sphere Correlation Function 1193 

As indicated by Wertheim, (2) t ~ = - ~ + i / 3 ~ = - I c ~ J  + i  Ifi~F such that as 
w--* 1, e = 0 ,  and /~/2=tan(/~/2). Backtracking the branches numerically 
yields curves versus w in Fig. 2 that show [t~ + ~] > ItJ for the corresponding 
simple poles for all w. 

Thus, for large n, from 

M, = ( -  1) ~ (n - 1)_____~.t ~ dt  H ( t )  t - ~  (19) 
2 x i  

for a contour around 0 of radius greater than any ]tv(w)i of interest, we 
o b t a i n  (~7) 

M~(-1)~(n-1)!2Re~t~-~+ILu/D'~=~M~ ( 2 0 )  
v 

where 

dD(t)  
D '  v = l i r a  = 12wL'v + (Sv + S'~) e 'v 

, ~ .  dt 

o _  

o 

0 . 0  

? o 

~ _ a  ~ - -  _ _ _  ; = 

o i , i 

0.0 0.2 0.4 

W 

0.2 0.4 0.6 0.8 1.O 

j J  

i i 11.0 0.6 0.8 

Fig. 2. First five roots  t~=  -ctv+ifl~ vs. w>~0.001. Top  panel  shows ~ ,  and  b o t t o m  panel 
shows  /~v (solid curves) and [t~J (dashed curves); the lowest curves correspond to v = 1 and 
the highest to v =  5. The values at w =  10 6 are: ~ =  17.109, 17.396, 17.777, 18.149, 18.484; 
fly = 3.537, 10.483, 17.218, 23.803, 30.296. 
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with S~ = S(tu), etc. W e  write 

M,~ = ( - 1 )~ (n - 1)! I t j~ l  U~ cos(u~ + nv~) (21) 

with Uvei"~=2t~Lv/D'v and r~= tan - l ( /~v /~ ) .  For  n > 6 ,  the curves of 
M,~(w) and Mn(w) are indistinguishable for 0.01 ~< w~< 1 on the scale of 
Fig. l; we may use M 1 for n~>10 and w~>10 -3, and for n~>15 and 
W )  10 -6 .  Except for n =  1, we can obtain better accord for small w by 

Tablel. Data ~Versus w f o r  Dominant Root t l = - a + i l 3 = l t l e - i T  
and for 2 t l L 1 / D '  1 = U e  iu 

w ~ /3 Itl V U u 

0.0001 11.84249 3 . 7 2 4 9 1  12 .41449  0.30474 24253.0 -0.25294 
0,0010 9.10273 3.90913 9.90661 0.40563 2001.6 -0.31918 
0.0100 6.24844 4.25717 7.56085 0.59808 158 .03  -0.43333 
0.0200 5.35555 4.42760 6.94878 0.69083 72.747 -0.48600 
0.0300 4.82227 4.55123 6.63083 0.75649 46.067 -0.52353 
0.0400 4.43754 4.65285 6.42968 0.80908 33.261 -0.55417 
0.0500 4.13469 4.74131 6.29092 0.85364 25,811 -0.58078 
0.0600 3.88386 4.82086 6.19073 0.89263 20.968 -0.60474 
0.0700 3.66906 4.89396 6.11660 0.92748 17.581 -0.62681 
0.0800 3.48070 4.96214 6.06120 0.95910 15.088 -0.64747 
0.0900 3.31259 5.02646 6.01985 0.98810 13.181 -0.66706 
0.1000 3.16050 5.08765 5 . 9 8 9 4 1  1.01493 11,678 -0.68579 
0.1250 2.83234 5.23028 5.94794 1.07448 9.0321 -0.72988 
0.1500 2.55722 5.36226 5 . 9 4 0 8 1  1.12581 7.3201 -0.77130 
0.1750 2.31893 5.48696 5.95685 1.17094 6.1290 -0.81100 
0.2000 2.10781 5.60652 5.98966 1.21119 5.2573 -0.84961 
0.2500 1 . 7 4 4 2 8  5 . 8 3 5 8 1  6 . 0 9 0 9 1  1,28036 4.0770 -0.92497 
0.3000 1 . 4 3 6 7 9  6.05802 6.22607 1,33793 3.3263 -0.99929 
0.3500 1.17010 6 . 2 7 7 9 1  6.38602 1.38653 2.8173 -1.07338 
0.4000 0.93590 6.49865 6.56570 1,42776 2.4586 -1.14738 
0.4500 0.72980 6.72232 6.76182 L46266 2.2010 -1.22080 
0.5000 0.54986 6.95002 6.97174 1,49184 2.0159 -1.29245 
0.5500 0.39577 7.18180 7.19270 1,51575 1.8852 -1.36043 
0.6000 0.26817 7.41634 7.42119 1,53465 1.7967 -1.42215 
0.6500 0.16787 7.65077 7 . 6 5 2 6 1  1.54886 1.7403 --1.47463 
0.7000 0.09470 7.88068 7.88125 1.55878 1.7062 --1.51534 
0.7500 0.04656 8.10097 8.10111 1.56505 1.6848 --1.54326 
0.8000 0.01898 8.30727 8.30729 1.56851 1.6673 --1.55959 
0.8500 0.00585 8 . 4 9 7 4 1  8 . 4 9 7 4 1  1.57011 1.6479 --1.56738 
0.9000 0.00111 8.67203 8.67203 1.57067 1.6247 -1.57016 
0.9500 0.00007 8.83390 8.83390 1.57079 1.5987 -1.57076 
1.0000 0.00000 8.98682 8.98682 1.57080 1.5720 -- 1.57080 

a The values specify the moments for large n and the correlation function for large r. 
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retaining additional terms in v; however, since the exact M,(w) are known, 
we consider only M~. Supressing the subscript v = 1, we have 

M~.,~M,I-M~=(-1)"(n-1)! It - ~ 1 U c o s ( u + n z )  (22) 

Table I lists w and values for t 1 = t =  -c~+ i/3= Itl e -~, and for the corre- 
sponding U(w) and u(w). This table is also appropriate for a following 
development of h. 

4. S H E L L  E X P A N S I O N S  OF  g 

As discussed by Wertheim, (2) g(r) can be obtained in closed form 
for given r from 5~-1{G} by expanding G of (6) in powers of S -1 and 
evaluating the residues at the roots ( to= [to[, tl, /2 = t * )  o f  S(t). Thus, 
for r>~l, 

g(r)=~gm(r), gS(r)- - ~  gm(r) for r<~s+l (23) 
1 1 

such that gin(r)= 0 for r < m, and for r ~> m, 

rgm(r)_(_12w)m-1 ~ d m 1{  
(m 1)! t~t~dt --W~-llim (t--t,) m t FL(t)]met(r m)'~ (24) 

- , =0  LS(t)J ] 

where gin(m) = 0 for m > 1. The results may be expressed as 

2 

rgm(r)= ~ Cl(rn, O) e t~(r m) ~ Cl(m,k)(r_m)k-1 (25) 
l = 0  k = l  

Wertheim (2) gives forms of the coefficients for m = 1, and forms for m ~< 5 
are given by Smith and Henderson, (4"s~ who include numerical comparisons 
of shell integrations and M2 for several values of w; numerical tables for 
g(w; r) are given in ref. 6. 

Corresponding forms for the Cl for m ~< 8 (obtained by machine com- 
putations (13)) are implicit in Fig. 3, which displays g(w; r) to r - - 9  and 
w=0.6.  The first minimum of g equals zero at w ~ 0 . 6 1 2 5 7 - w o  (for 
r ~  1.3094), and g is �9 (6) negative and physically unrealistic at slightly larger 
w. [The measured (ts) values of w for loose and dense random close packing 
of ball bearings (0.60 _+ 0.02 and 0.63 _+ 0.01) bracket w0.] 

The correlation function for r in one of the first s shells is given by 

h ~ ( r ) = - l + g S ( r ) = - l +  ~ gin(r), l ~ < r ~ < s + l  (26) 
m = l  



1196 Berger and Twersky 

Fig. 3. Plot ofPYg(w;r) for 0<w~<0.6 and l~<r~<9. At r= l ,  the curve ofg(w;1) isthe 
PY closed form (1 + w/2)/(1- w) 2. 

We obtain s-shell approximations for the moments by numerical integra- 
tion, 

fO +1 M , [ h  s] - dr h~(r) r" (27) 

and compare with the exact M ,  to obtain ranges of validity 0 <<. w << w(s, n). 
For  given n, w(s, n) increases moderately with increasing s; for given s, 
w(s, n) decreases markedly with increasing n. The essentials are indicated 
by the dashed curves s = 3-8 in Fig. 4 for m z [ h  s] and M6[hS]. (The dotted 
curves will be discussed subsequently.) 

5. R E S I D U E  SERIES FOR g 

Wertheim ~2~ also considered the poles of L f - l { G }  at the roots of D(t) 
and indicated that the behavior of h(r) for large r would be determined by 
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Fig. 4. The dashed curves that depart from the exact solid curves M2(w ) and M6(w ) at 
increasing values of w correspond to increasing the number of shell terms (from s = 3 to 8) in 
the approximate Mn[h s] of (27). The dotted curves that depart at larger values of w are based 
on the hybrid approximation m6[hS+ h a] as in (31). The hybrid M6[h3 + h a] is even better 
than M6[hS]. The hybrid M2[hS+h ~] curves practically overlay the exact M2. 

the pair of complex roots closest to the imaginary axis. For r >  1, and 
symbols as for (20) and (21), 

rh(r)= 2 Re ~ tvL~e't~'/D'v= ~ Uve .... cos(rflv + Uv)=-r ~ h ~) (28) 
v = [  v v 

with roots tv = -C~v + iflv as in Fig. 2. This residue series is rapidly con- 
vergent except in the neighborhood of r = 1 (the single discontinuity of h) 
where successive sequences exhibit a Gibbs-like effect. For any finite num- 
ber (v') of  terms, the peak of g occurs for r > 1; as v' increases (a larger v' 
is required for larger w), the peak approaches r = 1 and its magnitude over- 
shoots the PY g(1) = (1 + w/2)/(1 - w) 2. Figure 5 for w = 0.2 and 0.6 shows 
the essentials for v ' =  (1, 5, 10, 100); the overshoot at r,,~ 1.005 for v ' =  100 
is about 9 % for the smaller w and 9.4 % for the larger. 

For large r and w < 1, we need retain only the least damped exponen- 
tial term 

rh(r)~2Re(tlLler' l /D'l)= Ue r~cos(flr+u)=rh~l~=rha(r) (29) 
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! 

Io i i i 
1.00 1 5 1.10 1.15 1.20 1.25 

s 

r 

�9 

e l -  

1,00 1.'05 1,~10 1115 1.~20 1.~25 
r 

Fig. 5. Comparison of the exact g(r) (solid curves) for w=0.2 and w=0.6 with v'-term 
residue sequence approximations (dashed or dotted curves) of (28) for v' = (1, 5, 10, 100) to 
show the Gibbs-like effect; with increasing v', the approximations improve except for r ~ 1. 
The peak of the dotted curves (v'= 100) at r,~ 1.005 overshoots the PY g values of 1.708 and 
7.805 for w = 0.2 and 0.6 by about 8.985 % and 9.395 %, respectively. 

The subscript 1 is suppressed, and Table I applies for U, u, ~, and  /3. As 
shown in Fig. 6, h a suffices for r >  3 at w = 0 . 2 ,  and for r >  5 at w=0 .6 .  
Thus, h a supplements  the shell expansion by an asymptotic  tail, and 
provides a hybrid approx imat ion  h ~ h b for all r. For  simplicity, we use 

hb(r)=h'(r) for l ~ < r ~ < s + l  
(30) 

hb(r)=ha(r) for r > s + l  

The corresponding hybrid approx imat ion  of the moments  equals 

Mn[h '+ha]=Mn[hS]+ drh~(r) r n (31) 
+ 1  

where we may integrate h ar n directly. Figure 4 compares dashed curves 
M6[h s] and dot ted curves M6[h '+h a] for s =  3 8 with the exact solid 
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2.0 ;,5 ;.o 3.5 /0 
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o 

co 
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~j 
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3 O  .0 5~.0 6~.0 7~.0 
r 

Fig. 6. Comparison of the exact g (solid curve) and leading residue term g(l)= gO (dashed 
curve) based on (29) for w=0.2  and w=0.6.  The one-term approximation g" suffices at 
w=0.2 f o r r > 3  and at w = 0 . 6 f o r r > 5 .  

curve M 6 ;  for given s, the hybrid approximation holds for larger w, and 
M6[h3+h a] is even better than M6[hS].  The hybrid dotted curves 
M2[hS+h a] in Fig. 4 practically overlay the exact solid curve M2. The 
hybrid is better than the shell approximation because h b reduces the effects 
of the discontinuity of h" at r = s + 1; an improved version may follow from 
a different match-up point than s + 1, but this has not been investigated. 

A P P E N D I X .  M O M E N T S  OF THE PY T O T A L  C O R R E L A T I O N  
F U N C T I O N  h 

m I 

m 2 

l O - 2 w + w  2 

1 0 - 2 ( I + 2 w )  

(4 - w)(2 + w 2) 
- -  m 

8.3(1 +2w)  2 

8 - 2W + 4w 2 - w 3 

8.3(1 + 2w) 2 
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m 3 
( 175  - -  2 6 0 w  + 4 2 1 w  2 - -  2 2 9 w  3 + 6 2 w  4 - -  7w  5) 

1 7 5 . 4 ( 1  + 2 w )  3 

m 4 
(1 - w)  4 (16  - l l w  + 4 w  2) 

1 6 . 5 ( 1  + 2 w )  4 

M 5  = - ( 1 0 5 0 0  - 1 1 7 5 0 0 w  + 3 4 6 9 3 0 w  2 

- -  5 5 7 3 7 2 w  3 + 5 1 8 8 4 0 w  4 - -  2 9 7 7 0 0 w  5 

+ 1 0 1 2 5 5 w  6 - -  1 7 1 3 0 w  7 + 7 5 6 w 8 ) / 1 0 5 0 0  - 6(1 + 2 w )  5 

(1 - w)  4 (20  - 3 8 6 w  + 6 2 7 w  2 - 4 9 4 w  3 + 173w 4 - 2 1 w  5) 
m 6 = 

2 0 . 7 ( 1  + 2 w )  6 

M 7 = - ( 4 0 4 2 5 0 -  1 8 2 0 3 5 0 0 w  + 1 4 8 4 7 9 2 0 0 w  2 

- 5 0 7 8 4 4 5 4 0 w  3 + 9 9 6 9 2 9 8 2 2 w  4 

- 1 2 4 6 6 7 5 1 9 2 w  5 + 1 0 4 0 6 3 9 9 7 8 w  6 - 5 8 2 6 8 5 3 9 0 w  7 

+ 2 1 2 3 7 9 9 6 5 w  8 - 4 6 5 9 6 6 1 6 w  9 + 5 0 5 3 3 5 6 w  1~ 

- 1 1 6 4 2 4 w 1 1 ) / 4 0 4 2 5 0  - 8(1  + 2 w )  7 

M 8 = - ( 1  - w)  4 ( 8 0 0  - 6 3 5 4 0 w  + 6 2 0 1 1 2 w  2 

- -  1 4 9 7 9 7 6 w 3  + 1 8 4 1 6 4 0 w  4 -  1 2 7 1 1 4 5 w  5 

+ 4 9 5 9 8 0 w  6 - -  9 7 6 5 6 w  7 + 6 0 4 8 w 8 ) / 8 0 0  - 9 (1  + 2w)  8 

M 9 = - - ( 5 0 0 5 0 0  - -  7 5 5 4 0 5 0 0 w  + 1 5 6 0 2 7 7 3 7 5 w  2 

- 1 1 1 6 1 9 0 7 3 5 0 w  3 + 4 1 0 7 2 6 7 7 5 0 0 w  4 

- 9 3 3 8 9 0 3 3 9 1 6 w  5 + 1 4 2 9 8 4 4 6 4 4 6 2 w  6 

- 1 5 3 9 2 9 5 5 3 2 0 4 w  7 + 1 1 8 5 6 9 1 9 4 8 9 8 w  8 

- 6 5 2 2 6 8 5 2 4 0 6 w  9 + 2 5 0 7 4 9 8 4 1 8 8 w  ~~ 

- 6 4 0 8 2 7 8 2 6 6 w  11 + 9 8 3 2 3 9 9 7 2 w  12 

- -  7 1 7 3 5 6 6 4 w  ~3 + 1 0 0 9 0 0 8 w 1 4 ) / 5 0 0 5 0 0  �9 10(1 + 2 w )  9 

M l o  = - ( 1  - w)  4 ( 2 8 0 0  - 7 4 3 9 0 0 w  + 2 0 8 4 1 9 7 6 w  2 

- 1 5 4 9 6 3 9 7 0 w  3 + 4 5 6 0 0 8 7 2 8 w  4 

- 7 4 5 3 9 2 3 6 8 w  5 + 7 5 3 7 8 9 3 1 6 w  6 - 4 8 9 6 0 0 0 8 3 w  7 + 2 0 1 9 1 5 8 2 0 w  8 

- 4 9 5 4 0 5 2 4 w  9 + 6 1 5 0 1 4 4 w  m - 2 3 2 8 4 8 w  11 ) / 2 8 0 0 -  11 ( 1 + 2 w ) l o  
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