Moments of the Percus-Yevick Hard-Sphere Correlation Function

N. E. Berger ${ }^{1}$ and V. Twersky ${ }^{1}$

Received April 9, 1990; final July 20, 1990

Abstract

A simple recursive relation is derived for the moments $M_{n}, n=1,2, \ldots$, of the Percus-Yevick correlation function $h(r)$ for identical hard spheres. The M_{n} are rational functions of the volume fraction w occupied by the spheres; the first ten are given explicitly, and a single-term asymptotic form is obtained to suffice for the rest. Applications of the $M_{n}(w)$ include testing different approximations for h by numerical integration of $h(r) r^{n}$. We compare exact moments with shell approximations $M_{n}\left[h^{s}\right]$ corresponding to integration from $r=0$ to $s+1$ for $s=3-8$, and with hybrid approximations $M_{n}\left[h^{s}+h^{a}\right]$ which supplement the shell approximations with integrals of an asymptotic tail from $s+1$ to ∞. For a given s, the hybrid approximation is better for w increasing than the shell approximation, and $M_{n}\left[h^{3}+h^{a}\right]$ is even better than $M_{n}\left[h^{8}\right]$.

KEY WORDS: Percus-Yevick correlation function; moments; shell expansions; asymptotic forms; residue series; hybrid approximations.

1. INTRODUCTION

The solution of the Percus-Yevick (PY) equation ${ }^{(1)}$ for the radial distribution function $g(r)$ of a classical fluid of identical hard spheres was obtained by Wertheim ${ }^{(2)}$ and by Thiele ${ }^{(3)}$ in terms of the Laplace transform $\mathscr{L}\{\operatorname{rg}(r)\}=G(t)$. Here r is the distance from the center of one sphere divided by the sphere diameter d, so that $g(r)=0$ for $r<1$, and $g(r)=g(w ; r)$ depends on only one parameter: the volume fraction occupied by the spheres, $w=\rho \pi d^{3} / 6$, with ρ the number density. Piecewise analytic expressions for $g(r)$ at given r in the shells $s<r<s+1$ for $s=1,2, \ldots$, can be obtained ${ }^{(2)}$ by expanding the inverse transform $\mathscr{L}^{-1}\{G(t)\}$ in a geometrical progression and summing the residues of the

[^0]terms $\left(g_{m}\right)$ from $m=1$ to s. The exact results in the range $0 \leqslant r<s+1$ will be indicated by g^{s}.

Wertheim gave the closed from for g_{1}, and analogs through g_{5} and tabulated values are available ${ }^{(4-6)}$ for $r \leqslant 6$. Such shell expansions have relatively broad applicability, but we found them unsuitable except for small w for numerical investigations of integral equations ${ }^{(7)}$ for multiple scattering by correlated random distributions of spherical resonators. We extended the shell development to g_{8}, considered the residue series for the complete ${ }^{(2)} \mathscr{L}^{-1}\{G\}$ (which exhibits a Gibbs-like effect near $r=1$, but whose leading term g^{a} for moderately large r approximates g^{s}), as well as a hybrid approximation (g^{b}) based on g^{s} for $r \leqslant s+1$ and g^{a} for $r>s+1$. Although these extensions suffice for larger w than g^{5}, the most stable computational routines we developed for even moderately large w were based on the moments M_{n} of the total correlation function $h=g-1$. The present paper deals primarily with the moments and their applications to test shell $\left(h^{s}\right)$ and hybrid (h^{b}) forms of h by numerical integration.

The moments

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} d r h(w ; r) r^{n}=M_{n}(w), \quad h=g-1 \tag{1}
\end{equation*}
$$

are simple rational functions of w. The first three are available in the literature, ${ }^{(4,8,9)}$ and we may reconstruct these and obtain additional moments by symbolic computer differentiation of $\mathscr{L}\{r h(r)\}=H(t)$. However, it is much more convenient to work with a recursive relation for the M_{n} based on Baxter's equation ${ }^{(10)}$ for the PY h.

Section 2 provides a form of $H(t)$ suitable for symbolic differentiation, and then derives the recursive relation for the M_{n}. The first ten moments $M_{n}(w)$ are displayed in Fig. 1 and listed in the Appendix. Section 3 derives an asymptotic series $M_{n} \sim \sum_{v} M_{n}^{v}$ for large n based on the residues at the roots $t_{v}(w)$ of the denominator ${ }^{(2)}$ of $H(t)$. Figure 2 graphs the first five roots, and Table I provides numerical values for the dominant root $t_{1}(w)$ (and for basic magnitude U_{1} and phase u_{1} functions); a one-term approximation M_{n}^{1} suffices for $n>6$ and $w>0.01$. Section 4 considers shell expansions $g^{s}=h^{s}+1$ and compares exact $M_{n}(w)$ with shell approximations $M_{n}\left[h^{s}\right]$ based on numerical integration of $h^{s} r^{n}$ from $r=0$ to $s+1$ for $s=3-8$. Figure 3 displays $g(w ; r)$ to $r=9$ and $w=0.6$, and Fig. 4 compares $M_{2}\left[h^{s}\right]$ and $M_{6}\left[h^{s}\right]$ with the exact moments. Section 5 considers the convergent residue for $h(r)=\sum_{v} h^{(v)}$. Figure 5 compares exact shall results with residue sequences for $w=0.2$ and 0.6 to show the Gibbs-like effect near the discontinuity at $r=1$. Figure 6 shows that the leading residue term $h^{(1)}=h^{a}$ (which follows directly from Table I) suffices for $r>5$ even for $w=0.6$.

Figure 4 also shows that the hybrid $M_{6}\left[h^{s}+h^{a}\right]=M_{6}\left[h^{s}\right]+\int_{s+1}^{\infty} d r h^{a} r^{6}$ approximation is much better than the shell approximation for a given s, and that $M_{6}\left[h^{3}+h^{a}\right]$ is even better than $M_{6}\left[h^{8}\right]$; the hybrid curves for M_{2} included in Fig. 4 practically overlay the exact results.

2. MOMENTS OF THE CORRELATION FUNCTION

The exact leading terms of h for small w equal ${ }^{(11)}$

$$
\begin{array}{ll}
h=-1, & 0 \leqslant r<1 \\
h=w\left(8-6 r+r^{3} / 2\right)+\mathcal{O}\left(w^{2}\right), & 1 \leqslant r<2 \tag{2}
\end{array}
$$

which also follow from the PY equation. ${ }^{(1)}$ Substituting in (1), we obtain

$$
\begin{equation*}
M_{n}=-\frac{1}{n+1}+w \frac{2^{n+5} 3-\left(5 n^{2}+39 n+82\right)}{2(n+1)(n+2)(n+4)}+\mathscr{O}\left(w^{2}\right) \tag{3}
\end{equation*}
$$

The exact w^{2} contribution to h is also known ${ }^{(12)}$ in terms of elementary functions, and the PY approximation can be identified directly by comparison of forms in refs. 12 and 1 . Although such expansions of h suffice for small w, (3) indicates that corresponding expansions of M_{n} are restricted to smaller w as n increases. In the following we consider closed forms of $M_{n}(w)$ for the PY h without restrictions on w or n.

The generating function of the moments is $\mathscr{L}\{r h(r)\}=H(t)$:

$$
\begin{align*}
H(t) & =\int_{0}^{\infty} d r r h(r) e^{t r}=\sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!} \int_{0}^{\infty} d r h(r) r^{n+1} \\
& =\sum_{n=1}^{\infty} \frac{(-t)^{n-1}}{(n-1)!} M_{n} \tag{4}\\
M_{n} & =(-1)^{n-1} \lim _{t \rightarrow 0} \frac{d^{n-1}}{d t^{n-1}} H(t) \tag{5}
\end{align*}
$$

From Wertheim, ${ }^{(2)}$ we write $\mathscr{L}\{r g\}=G$ in the form

$$
\begin{equation*}
G(t)=t L(t) / D(t), \quad D(t)=12 w L(t)+S(t) e^{t} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& S(t)=(1-w)^{2} t^{3}+6 w(1-w) t^{2}+18 w^{2} t-12 w(1-w) \\
& L(t)=(1+w / 2) t+1+2 w
\end{aligned}
$$

Thus

$$
\begin{equation*}
H(t)=G(t)-t^{-2}=t L(t) / D(t)-t^{-2} \tag{7}
\end{equation*}
$$

and (5) may be performed by machine ${ }^{(13)}$ operations on the equivalent form

$$
\begin{equation*}
H(t)=\frac{L(t)\left[E_{2}(t)-12 w E_{5}(t)\right]-(1+w / 2)^{2}}{\left[1+12 w t E_{4}(t)\right] L(t)-t(1+2 w)(1+w / 2)} \tag{8}
\end{equation*}
$$

where

$$
E_{n}(t)=t^{-n}\left[e^{-t}-\sum_{v=0}^{n-1}(-t)^{\nu} / v!\right]
$$

The Fourier transform representation of the structure factor

$$
\begin{align*}
F(K) & =1+(6 w / \pi) \int d \mathbf{r} h(r) \exp (i \mathbf{K} \cdot \mathbf{r}) \\
& =1+(24 w / K) \int_{0}^{\infty} d r r h(r) \sin (K r) \tag{9}
\end{align*}
$$

generates the even moments

$$
\begin{equation*}
F(K)=1+24 w \sum_{n=1}^{\infty} \frac{\left(-K^{2}\right)^{n-1}}{(2 n-1)!} M_{2 n}=1+24 w M_{2}-24 w \frac{K^{2} M_{4}}{3!}+\cdots \tag{10}
\end{equation*}
$$

Since $F(K)=F(w ; K)$ must vanish for the unrealizable bound $w=1$ (corresponding to zero fluctuation scattering for a uniform medium), we require $M_{2}(1)=-1 / 24$ and $M_{2 n}(1)=0$ for $n \geqslant 2$. The PY F is also known in closed form ${ }^{(14)}$; in particular,

$$
\begin{equation*}
F(w ; 0)=\frac{(1-w)^{4}}{(1+2 w)^{2}}=1+24 w M_{2}(w) \tag{11}
\end{equation*}
$$

vanishes at $w=1$. Equation (11), which also follows ${ }^{(15)}$ directly from the scaled particle ${ }^{(16)}$ equation of state, gives $M_{2}(w)$ in closed form ${ }^{(4)}$ by inspection. The remaining PY $M_{2 n}$ are found to have $F(w ; 0)$ as a factor.

A simpler representation of the M_{n} follows from Baxter's equation ${ }^{(10)}$

$$
\begin{equation*}
r h(r)=-q^{\prime}(r)+12 w \int_{0}^{1} d t(r-t) h(|r-t|) q(t) \tag{12}
\end{equation*}
$$

where

$$
q(r)(1-w)^{2}=(1+2 w)\left(r^{2}-1\right)-(3 w / 2)(r-1)
$$

with $q(r)=0$ for $r \geqslant 1$, and $q^{\prime}(r)=d q / d r$. Operating on $r h$ with $\int_{0}^{\infty} d r r^{n-1}$,
changing the order of r and t integrations, and using $h(|r-t|)=-1$ for $r<t$, yields

$$
\begin{align*}
M_{n}= & -\int_{0}^{1} d r q^{\prime}(r) r^{n-1} \\
& +12 w \int_{0}^{1} d t q(t)\left[\frac{t^{n+1}}{n(n+1)}+\int_{t}^{\infty} d r r^{n-1}(r-t) h(r-t)\right] \tag{13}
\end{align*}
$$

Integrating over $s=r-t$ to obtain

$$
\sum_{m=0}^{n-1}\binom{n-1}{m} t^{m} M_{n-m}
$$

we define

$$
\begin{gather*}
-\int_{0}^{1} d r q^{\prime}(r) r^{n-1}=\frac{A}{(1-w)^{2}}, \quad A_{n} \equiv \frac{-[2 n+(n-3) w]}{2 n(n+1)} \\
\int_{0}^{1} d t q(t) t^{m}=\frac{B_{m}}{(1-w)^{2}}, \quad B_{m} \equiv-\frac{-[4+2 m+(m-1) w]}{2(m+1)(m+2)(m+3)} \tag{14}\\
C_{n}= \\
A_{n}+12 w \frac{B_{n+1}}{n(n+1)}=\frac{\left(n^{2}+9 n+26\right)[3 w-n(2+w)]-12(2+w)^{2}}{2(n+1)(n+2)(n+3)(n+4)}
\end{gather*}
$$

Thus (13) reduces to

$$
\begin{equation*}
M_{n}(1-w)^{2}=C_{n}+12 w \sum_{m=0}^{n-1}\binom{n-1}{m} B_{m} M_{n-m} \tag{15}
\end{equation*}
$$

and shifting the $m=0$ term $12 w B_{0} M_{n}=-w(4-w) M_{n}$ to the left side gives

$$
\begin{equation*}
M_{n}(1+2 w)=C_{n}+12 w \sum_{m=0}^{n-1}\binom{n-1}{m} B_{m} M_{n-m} \tag{16}
\end{equation*}
$$

such that $M_{1}=C_{1} /(1+2 w), M_{2}=\left(C_{2}+12 w B_{1} M_{1}\right) /(1+2 w)$, etc.
It is clear from (16) and (3) that all moments have the form

$$
\begin{equation*}
M_{n}(w)=\frac{-\mu_{n}(w ; N)}{(n+1)(1+2 w)^{n}}, \quad \mu_{n}(w ; N)=1+\sum_{1}^{N} a_{v}(-w)^{v} \tag{17}
\end{equation*}
$$

where the polynomial μ_{n} of order N is given by

$$
\begin{equation*}
\mu_{n}=c_{n}-\sum_{1}^{n-1}\binom{n-1}{m} \frac{n+1}{n+1-m} b_{m} \mu_{n-m} \tag{18}
\end{equation*}
$$

with $c_{n}=-(n+1) C_{n}(1+2 w)^{n-1}$, and $b_{n}=-12 w B_{n}(1+2 w)^{n-1}$. All c_{n}, and b_{n} except b_{1} (which is proportional to w), are of order $n+1$ in w; the order of μ_{n} (in general that of $b_{2} \mu_{n-2}$) is $N=(3 n+1) / 2$ for n odd, and $N=3 n / 2$ for n even.

The Appendix lists the first ten moments (generated by machine ${ }^{(13)}$), and Fig. 1 provides a three-dimensional display to delineate trends. For $0<w<1$, the number of extrema (and zeros) is given by $N-n-2>0$, so that successive pairs from M_{5}, M_{6}, to M_{19}, M_{20} start with one extremum and end with eight extrema, etc.

3. ASYMPTOTIC FORM OF M_{n}

Since the recursive relation for M_{n} involves sequential determination of preceding moments, we derive an asymptotic series for large n by working with the residues at the complex roots $\left(t_{v}, t_{v}^{*}\right)$ of $D(t)$ in (6).

Fig. 1. Three-dimensional display to delineate trends of the first ten moments $M_{n}(w)$ of the hard-sphere PY h vs, volume fraction w. The values of $-M_{n}(0)$ are $(1+n)^{-1}$. The values of $-M_{n}(1)$ for $n=1,2,3$ are $3 / 20,1 / 24,3 / 350$; the remaining even moments vanish, and the odd are small and alternate in sign.

As indicated by Wertheim, ${ }^{(2)} t_{v}=-\alpha_{v}+i \beta_{v}=-\left|\alpha_{v}\right|+i\left|\beta_{v}\right|$ such that as $w \rightarrow 1, \alpha=0$, and $\beta / 2=\tan (\beta / 2)$. Backtracking the branches numerically yields curves versus w in Fig. 2 that show $\left|t_{v+1}\right|>\left|t_{v}\right|$ for the corresponding simple poles for all w.

Thus, for large n, from

$$
\begin{equation*}
M_{n}=(-1)^{n} \frac{(n-1)!}{2 \pi i} \oint d t H(t) t^{-n} \tag{19}
\end{equation*}
$$

for a contour around 0 of radius greater than any $\left|t_{v}(w)\right|$ of interest, we obtain ${ }^{(17)}$

$$
\begin{equation*}
M_{n} \sim(-1)^{n}(n-1)!2 \operatorname{Re} \sum_{v} t_{v}^{-n+1} L_{v} / D_{v}^{\prime} \equiv \sum M_{n}^{v} \tag{20}
\end{equation*}
$$

where

$$
D_{v}^{\prime}=\lim _{t \rightarrow t_{v}} \frac{d D(t)}{d t}=12 w L_{v}^{\prime}+\left(S_{v}+S_{v}^{\prime}\right) e^{t_{v}}
$$

Fig. 2. First five roots $t_{\nu}=-\alpha_{v}+i \beta_{\nu}$ vs. $w \geqslant 0.001$. Top panel shows α_{ν}, and bottom panel shows β_{v} (solid curves) and $\left|t_{v}\right|$ (dashed curves); the lowest curves correspond to $v=1$ and the highest to $v=5$. The values at $w=10^{-6}$ are: $\alpha_{v}=17.109,17.396,17.777,18.149,18.484$; $\beta_{v}=3.537,10.483,17.218,23.803,30.296$.
with $S_{v}=\boldsymbol{S}\left(t_{v}\right)$, etc. We write

$$
\begin{equation*}
M_{n}^{v}=(-1)^{n}(n-1)!\left|t_{v}^{-n}\right| U_{v} \cos \left(u_{v}+n \tau_{v}\right) \tag{21}
\end{equation*}
$$

with $U_{v} e^{i u_{v}}=2 t_{v} L_{v} / D_{v}^{\prime}$ and $\tau_{v}=\tan ^{-1}\left(\beta_{v} / \alpha_{v}\right)$. For $n>6$, the curves of $M_{n}^{1}(w)$ and $M_{n}(w)$ are indistinguishable for $0.01 \leqslant w \leqslant 1$ on the scale of Fig. 1; we may use M_{n}^{1} for $n \geqslant 10$ and $w \geqslant 10^{-3}$, and for $n \geqslant 15$ and $w \geqslant 10^{-6}$. Except for $n=1$, we can obtain better accord for small w by

Table I. Data ${ }^{\alpha}$ versus w for Dominant Root $t_{1}=-\alpha+i \beta=|t| e^{-i T}$
and for $2 t_{1} L_{1} / D_{1}^{\prime}=U e^{i u}$

w	α	β	$\|t\|$	τ	U	u
0.0001	11.84249	3.72491	12.41449	0.30474	24253.0	-0.25294
0.0010	9.10273	3.90913	9.90661	0.40563	2001.6	-0.31918
0.0100	6.24844	4.25717	7.56085	0.59808	158.03	-0.43333
0.0200	5.35555	4.42760	6.94878	0.69083	72.747	-0.48600
0.0300	4.82227	4.55123	6.63083	0.75649	46.067	-0.52353
0.0400	4.43754	4.65285	6.42968	0.80908	33.261	-0.55417
0.0500	4.13469	4.74131	6.29092	0.85364	25.811	-0.58078
0.0600	3.88386	4.82086	6.19073	0.89263	20.968	-0.60474
0.0700	3.66906	4.89396	6.11660	0.92748	17.581	-0.62681
0.0800	3.48070	4.96214	6.06120	0.95910	15.088	-0.64747
0.0900	3.31259	5.02646	6.01985	0.98810	13.181	-0.66706
0.1000	3.16050	5.08765	5.98941	1.01493	11.678	-0.68579
0.1250	2.83234	5.23028	5.94794	1.07448	9.0321	-0.72988
0.1500	2.55722	5.36226	5.94081	1.12581	7.3201	-0.77130
0.1750	2.31893	5.48696	5.95685	1.17094	6.1290	-0.81100
0.2000	2.10781	5.60652	5.98966	1.21119	5.2573	-0.84961
0.2500	1.74428	5.83581	6.09091	1.28036	4.0770	-0.92497
0.3000	1.43679	6.05802	6.22607	1.33793	3.3263	-0.99929
0.3500	1.17010	6.27791	6.38602	1.38653	2.8173	-1.07338
0.4000	0.93590	6.49865	6.56570	1.42776	2.4586	-1.14738
0.4500	0.72980	6.72232	6.76182	1.46266	2.2010	-1.22080
0.5000	0.54986	6.95002	6.97174	1.49184	2.0159	-1.29245
0.5500	0.39577	7.18180	7.19270	1.51575	1.8852	-1.36043
0.6000	0.26817	7.41634	7.42119	1.53465	1.7967	-1.42215
0.6500	0.16787	7.65077	7.65261	1.54886	1.7403	-1.47463
0.7000	0.09470	7.88068	7.88125	1.55878	1.7062	-1.51534
0.7500	0.04656	8.10097	8.10111	1.56505	1.6848	-1.54326
0.8000	0.01898	8.30727	8.30729	1.56851	1.6673	-1.55959
0.8500	0.00585	8.49741	8.49741	1.57011	1.6479	-1.56738
0.9000	0.00111	8.67203	8.67203	1.57067	1.6247	-1.57016
0.9500	0.00007	8.83390	8.83390	1.57079	1.5987	-1.57076
1.0000	0.00000	8.98682	8.98682	1.57080	1.5720	-1.57080

[^1]retaining additional terms in v; however, since the exact $M_{n}(w)$ are known, we consider only M_{n}^{1}. Supressing the subscript $v=1$, we have
\[

$$
\begin{equation*}
M_{n} \sim M_{n}^{1} \equiv M_{n}^{a}=(-1)^{n}(n-1)!\left|t^{-n}\right| U \cos (u+n \tau) \tag{22}
\end{equation*}
$$

\]

Table I lists w and values for $t_{1}=t=-\alpha+i \beta=|t| e^{-i t}$, and for the corresponding $U(w)$ and $u(w)$. This table is also appropriate for a following development of h.

4. SHELL EXPANSIONS OF g

As discussed by Wertheim, ${ }^{(2)} g(r)$ can be obtained in closed form for given r from $\mathscr{L}^{-1}\{G\}$ by expanding G of (6) in powers of S^{-1} and evaluating the residues at the roots ($t_{0}=\left|t_{0}\right|, t_{1}, t_{2}=t_{1}^{*}$) of $S(t)$. Thus, for $r \geqslant 1$,

$$
g(r)=\sum_{1}^{\infty} g_{m}(r), \quad g^{s}(r)=\sum_{1}^{s} g_{m}(r) \quad \text { for } r \leqslant s+1
$$

such that $g_{m}(r)=0$ for $r<m$, and for $r \geqslant m$,

$$
\begin{equation*}
\operatorname{rg}_{m}(r)=\frac{(-12 w)^{m-1}}{(m-1)!} \sum_{l=0}^{2} \lim _{t \rightarrow t_{i}} \frac{d^{m-1}}{d t^{m-1}}\left\{\left(t-t_{l}\right)^{m} t\left[\frac{L(t)}{S(t)}\right]^{m} e^{t(r-m)}\right\} \tag{24}
\end{equation*}
$$

where $g_{m}(m)=0$ for $m>1$. The results may be expressed as

$$
\begin{equation*}
r g_{m}(r)=\sum_{l=0}^{2} C_{l}(m, 0) e^{t(r-m)} \sum_{k=1}^{m} C_{l}(m, k)(r-m)^{k-1} \tag{25}
\end{equation*}
$$

Wertheim ${ }^{(2)}$ gives forms of the coefficients for $m=1$, and forms for $m \leqslant 5$ are given by Smith and Henderson, ${ }^{(4,5)}$ who include numerical comparisons of shell integrations and M_{2} for several values of w; numerical tables for $g(w ; r)$ are given in ref. 6.

Corresponding forms for the C_{l} for $m \leqslant 8$ (obtained by machine computations ${ }^{(13)}$) are implicit in Fig. 3, which displays $g(w ; r)$ to $r=9$ and $w=0.6$. The first minimum of g equals zero at $w \approx 0.61257 \equiv w_{0}$ (for $r \approx 1.3094$), and g is negative ${ }^{(6)}$ and physically unrealistic at slightly larger w. [The measured ${ }^{(18)}$ values of w for loose and dense random close packing of ball bearings (0.60 ± 0.02 and 0.63 ± 0.01) bracket w_{0}.]

The correlation function for r in one of the first s shells is given by

$$
\begin{equation*}
h^{s}(r)=-1+g^{s}(r)=-1+\sum_{m=1}^{s} g_{m}(r), \quad 1 \leqslant r \leqslant s+1 \tag{26}
\end{equation*}
$$

Fig. 3. Plot of PY $g(w ; r)$ for $0<w \leqslant 0.6$ and $1 \leqslant r \leqslant 9$. At $r=1$, the curve of $g(w ; 1)$ is the PY closed form $(1+w / 2) /(1-w)^{2}$.

We obtain s-shell approximations for the moments by numerical integration,

$$
\begin{equation*}
M_{n}\left[h^{s}\right] \equiv \int_{0}^{s+1} d r h^{s}(r) r^{n} \tag{27}
\end{equation*}
$$

and compare with the exact M_{n} to obtain ranges of validity $0 \leqslant w \leqslant w(s, n)$. For given $n, w(s, n)$ increases moderately with increasing s; for given s, $w(s, n)$ decreases markedly with increasing n. The essentials are indicated by the dashed curves $s=3-8$ in Fig. 4 for $M_{2}\left[h^{s}\right]$ and $M_{6}\left[h^{s}\right]$. (The dotted curves will be discussed subsequently.)

5. RESIDUE SERIES FOR \boldsymbol{g}

Wertheim ${ }^{(2)}$ also considered the poles of $\mathscr{L}^{-1}\{G\}$ at the roots of $D(t)$ and indicated that the behavior of $h(r)$ for large r would be determined by

Fig. 4. The dashed curves that depart from the exact solid curves $M_{2}(w)$ and $M_{6}(w)$ at increasing values of w correspond to increasing the number of shell terms (from $s=3$ to 8) in the approximate $M_{n}\left[h^{s}\right]$ of (27). The dotted curves that depart at larger values of w are based on the hybrid approximation $M_{6}\left[h^{s}+h^{a}\right]$ as in (31). The hybrid $M_{6}\left[h^{3}+h^{a}\right]$ is even better than $M_{6}\left[h^{8}\right]$. The hybrid $M_{2}\left[h^{s}+h^{a}\right]$ curves practically overlay the exact M_{2}.
the pair of complex roots closest to the imaginary axis. For $r>1$, and symbols as for (20) and (21),

$$
\begin{equation*}
r h(r)=2 \operatorname{Re} \sum_{v=1}^{\infty} t_{v} L_{v} e^{r t_{v}} / D_{v}^{\prime}=\sum_{v} U_{v} e^{-r \alpha_{v}} \cos \left(r \beta_{v}+u_{v}\right) \equiv r \sum_{v} h^{(v)} \tag{28}
\end{equation*}
$$

with roots $t_{v}=-\alpha_{v}+i \beta_{v}$ as in Fig. 2. This residue series is rapidly convergent except in the neighborhood of $r=1$ (the single discontinuity of h) where successive sequences exhibit a Gibbs-like effect. For any finite number $\left(v^{\prime}\right)$ of terms, the peak of g occurs for $r>1$; as v^{\prime} increases (a larger v^{\prime} is required for larger w), the peak approaches $r=1$ and its magnitude overshoots the PY $g(1)=(1+w / 2) /(1-w)^{2}$. Figure 5 for $w=0.2$ and 0.6 shows the essentials for $v^{\prime}=(1,5,10,100)$; the overshoot at $r \approx 1.005$ for $v^{\prime}=100$ is about 9% for the smaller w and 9.4% for the larger.

For large r and $w<1$, we need retain only the least damped exponential term

$$
\begin{equation*}
r h(r) \approx 2 \operatorname{Re}\left(t_{1} L_{1} e^{r 1_{1}} / D_{1}^{\prime}\right)=U e^{-r x} \cos (\beta r+u)=r h^{(1)} \equiv r h^{a}(r) \tag{29}
\end{equation*}
$$

Fig. 5. Comparison of the exact $g(r)$ (solid curves) for $w=0.2$ and $w=0.6$ with v^{\prime}-term residue sequence approximations (dashed or dotted curves) of (28) for $v^{\prime}=(1,5,10,100)$ to show the Gibbs-like effect; with increasing ν^{\prime}, the approximations improve except for $r \approx 1$. The peak of the dotted curves $\left(v^{r}=100\right)$ at $r \approx 1.005$ overshoots the PY g values of 1.708 and 7.805 for $w=0.2$ and 0.6 by about 8.985% and 9.395%, respectively.

The subscript 1 is suppressed, and Table I applies for U, u, α, and β. As shown in Fig. 6, h^{a} suffices for $r>3$ at $w=0.2$, and for $r>5$ at $w=0.6$. Thus, h^{a} supplements the shell expansion by an asymptotic tail, and provides a hybrid approximation $h \approx h^{b}$ for all r. For simplicity, we use

$$
\begin{array}{lll}
h^{b}(r)=h^{s}(r) & \text { for } & 1 \leqslant r \leqslant s+1 \\
h^{b}(r)=h^{a}(r) & \text { for } & r>s+1 \tag{30}
\end{array}
$$

The corresponding hybrid approximation of the moments equals

$$
\begin{equation*}
M_{n}\left[h^{s}+h^{a}\right]=M_{n}\left[h^{s}\right]+\int_{s+1}^{\infty} d r h^{a}(r) r^{n} \tag{31}
\end{equation*}
$$

where we may integrate $h^{a} r^{n}$ directly. Figure 4 compares dashed curves $M_{6}\left[h^{s}\right]$ and dotted curves $M_{6}\left[h^{s}+h^{a}\right]$ for $s=38$ with the exact solid

Fig. 6. Comparison of the exact g (solid curve) and leading residue term $g^{(1)}=g^{a}$ (dashed curve) based on (29) for $w=0.2$ and $w=0.6$. The one-term approximation g^{a} suffices at $w=0.2$ for $r>3$ and at $w=0.6$ for $r>5$.
curve M_{6}; for given s, the hybrid approximation holds for larger w, and $M_{6}\left[h^{3}+h^{a}\right]$ is even better than $M_{6}\left[h^{8}\right]$. The hybrid dotted curves $M_{2}\left[h^{s}+h^{a}\right]$ in Fig. 4 practically overlay the exact solid curve M_{2}. The hybrid is better than the shell approximation because h^{b} reduces the effects of the discontinuity of h^{s} at $r=s+1$; an improved version may follow from a different match-up point than $s+1$, but this has not been investigated.

APPENDIX. MOMENTS OF THE PY TOTAL CORRELATION FUNCTION h

$$
\begin{aligned}
& M_{1}=-\frac{10-2 w+w^{2}}{10 \cdot 2(1+2 w)} \\
& M_{2}=-\frac{(4-w)\left(2+w^{2}\right)}{8 \cdot 3(1+2 w)^{2}}=-\frac{8-2 w+4 w^{2}-w^{3}}{8 \cdot 3(1+2 w)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{3}=-\frac{\left(175-260 w+421 w^{2}-229 w^{3}+62 w^{4}-7 w^{5}\right)}{175 \cdot 4(1+2 w)^{3}} \\
& M_{4}=-\frac{(1-w)^{4}\left(16-11 w+4 w^{2}\right)}{16 \cdot 5(1+2 w)^{4}} \\
& M_{5}=-\left(10500-117500 w+346930 w^{2}\right. \\
&-557372 w^{3}+518840 w^{4}-297700 w^{5} \\
&\left.+101255 w^{6}-17130 w^{7}+756 w^{8}\right) / 10500 \cdot 6(1+2 w)^{5} \\
& M_{6}=-\frac{(1-w)^{4}\left(20-386 w+627 w^{2}-494 w^{3}+173 w^{4}-21 w^{5}\right)}{20 \cdot 7(1+2 w)^{6}} \\
& M_{7}=-\left(404250-18203500 w+148479200 w^{2}\right. \\
&-507844540 w^{3}+996929822 w^{4} \\
&-1246675192 w^{5}+1040639978 w^{6}-582685390 w^{7} \\
&+212379965 w^{8}-46596616 w^{9}+5053356 w^{10} \\
&\left.-116424 w^{11}\right) / 404250 \cdot 8(1+2 w)^{7} \\
& M_{8}=-(1-w)^{4}\left(800-63540 w+620112 w^{2}\right. \\
&-1497976 w^{3}+1841640 w^{4}-1271145 w^{5} \\
&\left.+495980 w^{6}-97656 w^{7}+6048 w^{8}\right) / 800 \cdot 9(1+2 w)^{8} \\
& M_{9}=-\left(500500-75540500 w+1560277375 w^{2}\right. \\
&-11161907350 w^{3}+41072677500 w^{4} \\
&-93389033916 w^{5}+142984464462 w^{6} \\
&-153929553204 w^{7}+118569194898 w^{8} \\
& M_{10}=-\left(1-65226852406 w^{9}+25074984188 w^{10}\right. \\
&\left.-1549540524 w^{9}+6150144 w^{10}-232848 w^{11}\right) / 2800 \cdot 11(1+2 w)^{10} \\
&\left.-71735664 w^{13}+1009008 w^{14}\right) / 500500 \cdot 10(1+2 w)^{9} \\
&- 745392368 w^{5}+753789316 w^{6}-489600083 w^{7}+201915820 w^{8} \\
&-743900 w+20841976 w^{2} \\
& \hline 10+983239972 w^{12} \\
& \hline
\end{aligned}
$$

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval Research.

REFERENCES

1. J. K. Percus and G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev. 110:1-13 (1958).
2. M. S. Wertheim, Exact solution of the Percus-Yevick integral equation for hard spheres, Phys. Rev. Lett. 10:321-323 (1963).
3. E. Thiele, Equation of state for hard spheres, J. Chem. Phys. 39:474-479 (1963).
4. W. R. Smith and D. Henderson, Analytical representation of the Percus-Yevick hard-sphere radial distribution function, Mol. Phys. 19:411-415 (1970).
5. D. Henderson and W. R. Smith, Exact analytical formulas for the distribution functions of charged hard spheres in the mean spherical approximation, J. Stat. Phys. 19:191-200 (1978).
6. G. J. Throop and R. J. Bearman, Numerical solution of the Percus-Yevick equation for the hard sphere potential, J. Chem. Phys. 42:2408-2411 (1965); F. Mandel, R. J. Bearman, and M. Y. Bearman, Numerical solution of the Percus-Yevick equation for the LennardJones (6-12) and hard sphere potentials, J. Chem. Phys. 52:3315-3323 (1970).
7. V. Twersky, Coherent scalar field in pair-correlated random distributions of aligned scatterers, J. Math. Phys. 18:2468-2486 (1977); J. Acoust. Soc. Am. 64:1710-1719 (1978).
8. H. D. Jones, Method of finding the equation of state of liquid metals, J. Chem. Phys. 55:2640-2642 (1971).
9. I. Nezbeda, Analytical solution of the Percus-Yevick equation for fluid and hard spheres, Czech J. Phys. B 24:55-62 (1974).
10. R. J. Baxter, Orenstein-Zernike relation for a disordered fluid, Aust. J. Phys. 21:563-569 (1968).
11. J. G. Kirkwood, Statistical mechanics of fluid mixtures, J. Chem. Phys. 3:300-313 (1935).
12. B. R. A. Nijboer and L. van Hove, Radial distribution function of a gas of hard spheres and the superposition approximation, Phys. Rev. 85:777-783 (1952).
13. Symbolic manipulation package Reduce, Version 3.2, Rand Corporation, Santa Monica, California (1985).
14. N. W. Ashcroft and J. Lekner, Structure and resistivity of liquid metals, Phys. Rev. 145:83-90 (1966).
15. S. W. Hawley, T. H. Kays, and V. Twersky, Comparison of distribution functions from scattering data on different sets of spheres, IEEE Trans. Antennas Propagation AP-15:118-135 (1967).
16. H. Reiss, H. L. Frisch, and J. L. Lebowitz, Statistical mechanics of rigid spheres, J. Chem. Phys. 31:369-380 (1959),
17. P. Henrici, Applied Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977), pp. 442 ff .
18. G. David Scott, Packing of spheres, Nature 188:908-909 (1960).

[^0]: ${ }^{1}$ Mathematics Department, University of Illinois, Chicago, Illinois 60680.

[^1]: ${ }^{a}$ The values specify the moments for large n and the correlation function for large r.

